Graphing

Types of graphs:

Pictogram: numeric data are represented by pictures, usually only nominal data are depicted in this way

Example: milk production increases by 200%

Before

Biased way:

- height of cow is doubled but two-dimensionally cow is four times bigger, three-dimensionally it is eight times bigger

After

Unbiased way:

- increase is correctly depicted as two times greater
Graphing: Pie Chart

Pie chart: used with nominal or frequency data
Example: number of students by province and country

- a segment can be emphasized by separating it
- two-dimensional pie cannot create a biased view

- three-dimensional pies can bias a slice depending on its position
 - a slice in front appears larger
 - put a slice in the back to reduce its size
 - separating it creates emphasis

Student enrollment

<table>
<thead>
<tr>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
</tr>
<tr>
<td>Quebec</td>
</tr>
<tr>
<td>USA</td>
</tr>
<tr>
<td>Other country</td>
</tr>
<tr>
<td>Other prov.</td>
</tr>
</tbody>
</table>

Student enrollment

<table>
<thead>
<tr>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
</tr>
<tr>
<td>Quebec</td>
</tr>
<tr>
<td>USA</td>
</tr>
<tr>
<td>Other country</td>
</tr>
<tr>
<td>Other prov.</td>
</tr>
</tbody>
</table>
Graphing: Bar Chart and Histogram

Bar graph: used for nominal data, usually frequency counts, are depicted by bars proportional to their magnitudes

- bars are separated
- extreme length bars can be split

Histogram: used for ordinal data
- bars are adjacent, no gaps
- one axis is ordered, first or last bars may include extremes
Graphing: Box-Plot

Box-and-whisker plot or Box-plot: used with interval/ratio data
- useful for investigating new types of data called Exploratory Data Analysis
- needs maximum, minimum and quartiles (Q_1, Q_2, Q_3)
- data needs to be sorted, which is difficult for large data sets

Example: body weights of a sample
Graphing: Stem-plot

Stem-and-leaf plot or Stem-plot: used with discrete interval/ratio data
- like a frequency graph but the actual numbers are preserved
- first make a list (stem) of all the first digits
- next for each stem digit, list last digit of all matching data (leaf)
- graph the results, usually horizontally
- can combine stem numbers e.g., 0-1, 2-3, etc.

Example: data of no. of cardiographs from an outpatient clinic: 25 31 20 32 13 14 43 2 57 23 36 32 33 32 44 32 52 44 51 45

First arrange in order:
2, 13, 14, 20, 23, 25, 31, 32, 32, 32, 33, 36, 43, 44, 44, 45, 51, 52, 57

Next separate by first digits. Note, first digit for 2 is 0.
Then beside each first digit list all last digits that start with the same first digit.

```
<table>
<thead>
<tr>
<th>Stem</th>
<th>Leaves</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>1-3</td>
<td>3, 4, 5</td>
</tr>
<tr>
<td>2-0</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>3-1</td>
<td>2, 2, 2, 2, 3, 6</td>
</tr>
<tr>
<td>4-3</td>
<td>3, 4, 4</td>
</tr>
<tr>
<td>5-1</td>
<td>1, 2, 7</td>
</tr>
</tbody>
</table>
```

Then graph:
Graphing: Line Graph

Line graph: used with interval and ratio data

- scaling can create a bias
- use large scales to hide changes
- truncated axis reduces “white space”

Sales are stable

Sales are increasing
Graphing: Ogive

Ogive or cumulative frequency: (pronounced o-jive) line starts at zero and accumulates to 100%

- useful for determining percentages (by interpolation)
Rules for Constructing a Frequency Histogram

1. There should be between **5 and 20 classes**.
 • this is strictly for aesthetic purposes

2. The class width should be an **odd number**.
 • this ensures that the midpoint has the same number of decimal places as the original data
 \[
 X_{\text{midpoint}} = \frac{\text{lower limit} + \text{upper limit}}{2}
 \]

3. The classes must be **mutually exclusive**.
 • each datum must fall into one class and one class only

4. The classes must be **continuous**.
 • there should be no “gaps” in the number line even if a class has no members

5. The classes must be **exhaustive**.
 • all possible data must fit into one of the classes

6. The classes must have **equal width**.
 • if not there will be a bias among the classes
 • you can have open-ended classes at the ends (i.e., for ages you may use 10 and under or 65 and over, etc.)
Types of Frequency Distributions

Categorical - for nominal types of data

Ungrouped - for numerical data with few scores

Grouped - for numerical data with many scores

Example: Distribution of the number of hours that boat batteries lasted.

<table>
<thead>
<tr>
<th>Class Limits</th>
<th>Class Bounds</th>
<th>Tally</th>
<th>Frequency</th>
<th>Cumulative frequency</th>
<th>Cumulative percentages</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-30</td>
<td>23.5-30.5</td>
<td>///</td>
<td>3</td>
<td>3</td>
<td>3/25*100 = 12%</td>
</tr>
<tr>
<td>31-37</td>
<td>30.5-37.5</td>
<td>/</td>
<td>1</td>
<td>1+3= 4</td>
<td>4/25*100 = 16%</td>
</tr>
<tr>
<td>38-44</td>
<td>37.5-44.5</td>
<td>###</td>
<td>5</td>
<td>5+4= 9</td>
<td>9/25*100 = 36%</td>
</tr>
<tr>
<td>45-51</td>
<td>44.5-51.5</td>
<td>### /</td>
<td>9</td>
<td>9+9= 18</td>
<td>“ 72%</td>
</tr>
<tr>
<td>52-57</td>
<td>51.5-57.5</td>
<td>### /</td>
<td>6</td>
<td>6+18= 24</td>
<td>“ 96%</td>
</tr>
<tr>
<td>58-64</td>
<td>57.5-64.5</td>
<td>/</td>
<td>1</td>
<td>1+24= 25</td>
<td>“ 100%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>25</td>
<td>25</td>
<td>100%</td>
</tr>
</tbody>
</table>

Use these numbers for frequency polygon. Use these numbers for constructing cumulative frequency polygon, also called an ogive.
Frequency Polygon and Ogive

Frequency polygon:

Cumulative frequency or ogive: